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I. Abstract  

In this lab, a pendulum slider system was analyzed in order to better understand the 

modeling of dynamic systems using MatLab and Simulink software. Nonlinear and linear models 

were separately developed and simulated using both MatLab and Simulink and then compared to 

each other as well as an experimental measured response of the system. In the first part of the 

lab, the nonlinear and linear equations of motions were developed and simulated using MatLab 

and Simulink to predict the response of the system. It was shown that the simulations are 

identical in either programming environment and that under the small angle assumption, the 

linear system is a valid model. In the next part of the lab, the slider and pendulum position 

potentiometers were calibrated and data was collected after initiating motion in the system. The 

data was analyzed to find the coefficients of dry friction and viscous damping which were 0.0732 

and 0.0968  respectively. Using these values to simulate the motion again on MatLab, them
Ns  

linear model, nonlinear model, and real response motions could be directly compared to 

determine the accuracy of the models. It was found that the coefficient of dry friction was 

verified, but the viscous damping coefficient had to be changed to 0.01  to produce a similarm
Ns  

model to the experimental data. Therefore, it was shown that the methods used to calculate the 

coefficients are good for estimating, yet are not perfect. Additionally, the nonlinear model was 

shown to closely model the true to life experimental data that was collected in the lab, thus 

verifying the simulation techniques. 
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II. Introduction  

To be able to properly model and understand dynamic systems, it is important to be able                

to solve the differential equations that govern their motion. Multi-degree of freedom systems are              

complex and difficult to model by hand, so computers are used to provide the numerical analysis                

needed to simulate their behaviors. The first part of the lab modeled a two-degree of freedom                

pendulum mounted on a slider using computer software assuming the pendulum had viscous             

damping and the slider had Coulomb damping. The second part of the lab involved              

experimentally determining the values for the viscous and Coulomb damping coefficients and            

comparing the measured response to the simulated response. The objectives of this lab were to               

learn how to use Matlab to simulate the behavior of dynamic systems and to observe the                

differences between the performance of linear and nonlinear models. Additionally, this lab            

explores the validity of the models used to simulate multi degree of freedom systems through               

comparison of simulated models to real-world experimental data. 

 

III. Theory  

The system to be dynamically modeled and experimentally analyzed in this experiment is             

a two-degree of freedom pendulum mounted on a slider, as shown in Figure 1: 

 
Figure 1. Pendulum-Slider System (drawn by Christopher Cullum) 
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The oscillations of the system are assumed to be characterized by viscous damping in the 

pendulum and Coulomb damping in the slider. 

By constructing free body diagrams for both the pendulum and the slider, equations of              

motion for the system were able to be developed using kinematics and Newton’s laws. The               

forces acting on the pendulum include gravity, x and y pin forces, and the moment caused by                 

viscous damping. The forces acting on the slider are the reaction forces and moment form the                

pinned pendulum, the normal force from the track, identical spring forces, and the dry friction               

force opposing motion. Once the newtonian force and moment equations combined with the             

kinematic equations are simplified for the whole system, the resulting two equations of motion: 

      (1)  

                                                           (2) 
are observed to be nonlinear. This prompts a restructure into the state form  using 

as the states, which is more suitable for simulation:, x, θ, θ x  ˙   ˙  

 (3) 

To linearize the system model, equilibrium positions must be determined and Taylor’s theorem 

applied. 

The equilibrium positions are the following:

. Using the Taylor series expansion,; x , θ , sin(θ) M /(m gl), Δx −Ẋ = 0  ˙ = 0  ˙ = 0  =  0 1  = 2k
μ(m +m )g1 2  

these equations: 

                                                                                                            (4) 

                                                                                                       (5) 

are arrived at, which when combined with the equilibrium conditions determined previously,            

yields the linearized state space equations: 
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                                                                (6) 

 

 

IV. Procedure  

Using the equations derived in the theory section, MatLab and Simulink were used to              

simulate both linear and nonlinear models of the pendulum-slider system. By reducing the             

system of second-order differential equations to a system of first-order differential equations,            

MatLab is able to use numerical methods to estimate the solution to the system given initial                

conditions. Therefore, functions were defined that would output the mass matrices and forcing             

functions for the linear and nonlinear systems. These functions were used in a differential              

equation solver with the given initial conditions to produce the given solutions to the system of                

differential equations. Similarly, Simulink was used to graphically produce the results for linear             

and nonlinear systems. The main difference being that simulink does not require the system be               

reduced to a system of first-order differential equations. The results of both were then compared               

to show the validity of using either solver for linear or nonlinear differential equations.  

After completing the simulations for the linearized and nonlinear pendulum-slider          

systems, the response of the systems was experimentally determined for comparison with our             

simulations. The slider position potentiometer and then the pendulum position potentiometer           

were calibrated using a linear trendline of recorded potentiometer voltage values on the             

experimental set-up shown in Figure 1. Once the system was calibrated, the next step was to                

estimate both the pendulum viscous damping coefficient and the slider dry friction coefficient             

simultaneously. With initial conditions of 30° for the pendulum and 3 centimeters for the slider,               

a simulink data acquisition program was run to gather potentiometer voltages that were then              

converted into positions for the pendulum and slider. Using the gathered data, it was possible to                

calculate the damped and undamped natural frequencies for the pendulum, and therefore the             
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pendulum’s viscous damping coefficient. It was also possible to relate the oscillation amplitudes             

at the initial time and end time to calculate the dry friction coefficient. 

 

V. Results and Discussion  

  

Part 1. 

With the given values for initial conditions and system parameters, Figure 2 shows the results of                

the linear simulation that was run in MatLab, and Figure 3 shows the results of the linear                 

simulation in Simulink. Similarly, Figures 4 and 5 show the Matlab and Simulink simulations,              

respectively, for the nonlinear system. 

 
Figure 2. MatLab plots of the linear system solution 
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Figure 3. Simulink plots of the linear system solution 

 
Figure 4. MatLab plots of the nonlinear system solution 
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Figure 5. Simulink plots of the nonlinear system solution 

 

As shown in the figures, the simulations run in MatLab and Simulink are identical,              

proving that either can be used to simulate or analyze data. Furthermore, the responses of the                

linear and nonlinear systems are similar, but not identical. For the initial large displacement of               

the system, the nonlinearity of the system is much more evident in the shown solution. However,                

once the system dampens to smaller displacements, it approaches the solution shown by the              

linear simulation. As can be seen in the figure, the linear system becomes a good approximation                

of the nonlinear system once the displacement of the pendulum falls below ~0.15 rad (this is                

consistent with the small angle assumption typically made in dynamic analysis). The reason why              

this is the case and why there is a difference in the linear and nonlinear systems is because there                   

is a nonlinearity in the system due to the swinging pendulum. The restoring force on the                

pendulum is a nonlinear function of angle (sin). Therefore, only for small angles when sin(θ)≈θ               

can we linearize the system.  
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Part 2. 

Figures 6 and 7 show the calibration curves for the slider and pendulum voltages.              

Through the calibration procedure, the equations to transform the voltages to position and angle              

were as follows: 

 Slider Position [cm] = -1.0079 [cm/V] * Voltage [V] - 0.388 [cm] (7) 

 Pendulum Position [deg] = -32.138 [deg/V] * Voltage [V] - 86.101 [deg] (8) 

 
Figure 6. Calibration curve of the slider position 

 
Figure 7. Calibration curve of the pendulum position 

 

As is shown, the R-squared values are very close to 1, indicating that it is likely that the chosen                   

regression of a line is a good fit for the data. Additionally, the transducers used in the experiment                  

are linear, so this result is expected. However, these results only show the linearity of the                

transducers for the tested range. It would be possible to extrapolate these curves to predict the                
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voltage at 60° or -4.5 centimeters, but it is unknowable without testing if the transducer is linear                 

in that range or if there is a voltage limit that would be reached that would make such an                   

extrapolation invalid.  

Figures 8 and 9 show the curves used to estimate the viscous damping coefficient and               

dry-coulomb friction coefficients, respectively. By analyzing the decay of the isolated pendulum            

and slider motions, the viscous damping coefficient was calculated to be 0.2445 , and the           m
Ns    

dry-coulomb friction coefficient was calculated to be 0.0732. It must be stated that the decay in                

the pendulum and slider motions are not due to purely viscous damping and dry friction               

respectively. There is dry friction in the axle of the pendulum and there is viscous damping as the                  

slider moves through air. However, because these effects are much smaller than the originally              

stated cause of the damping, it is assumed that these minor effects are negatable.  

 
Figure 8. Isolated motion of the pendulum 

 
 0.771 hzωd = τ p

2π = 14 s
2π 24* = 1  (9) 
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 ς =
ln[ n

1 ( x(t )n
x(t )0 )]2

(2π) + ln2 [ n
1 ( x(t )n

x(t )0 )]
2

1/2

 (10) 

 .0044925ς = ln( )[ 1
27 14

30 ]2

(2π) + ln( )2 [ 1
27 14

30 ]2

1/2

= 0  (11) 

 ωn,p = ωd

√1−ς2
 (12) 

 0.772 hzωn,p = 10.771 hz
√1−0.011352

= 1  (13) 

 ςω .0044925 0.772 .0968 C = 2 n = 2 * 0 * 1 = 0 m
Ns  (14) 

 
Figure 9. Isolated motion of the slider. 

 

 

 4.137 hzωn = τ s
2π = 4

2π 9* = 1  (15) 

 μ = 4ng(m +m )s p

x(t )−x(t ) k[ 0 n ] eq  (16) 
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 .0732μ = 0.24−0.07 294[ ]
4 9g(1.15+0.783)*

= 0  (17) 

 

 
Figure 10. Comparison between experimental data and nonlinear simulation  

 

Using the previously calculated values for the viscous damping and dry friction 

coefficients, the simulation produced very different results from the data that was collected. 

Figure 10 shows how the value for the viscous damping had to be corrected from 0.09  tom
Ns  

0.01  to produce a similar graph. Additionally, the displacement of the slider was set to zero inm
Ns  

order to simulate the effect noted in the experiment. Almost immediately after releasing the 

slider, it stopped vibrating freely and was only affected by the motion of the pendulum. The 

linear decay estimate for mu was quite accurate, without any adjustment required to produce the 

simulated result. Finally, the translational system is predicted to stop when the following 

conditions are met:  

   ẋ = 0 (18) 
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x < k
μN (19) 

Moreover, 

 .0047 mk
μN = 294

0.0732  (1.15+0.783) 9.81* * = 0  (20) 

This implies that the slider should stop moving when the displacement is less than 0.47 cm and 

the velocity is zero. However, experimental data shows that the slider changes direction at much 

smaller displacements and continues to move. This is explained by the effect of the swinging 

pendulum. Equations 18 - 20 assume the pendulum to not be swinging. Because that is not the 

case, a force from the pivot point causes the slider to continue to oscillate at displacements lower 

than that which was predicted to be possible.  

 

VI. Conclusions  

In the first section of this lab, the linear and nonlinear simulations through MatLab and               

Simulink showed that under the small angle assumption, the linear and nonlinear models are              

effectively the same. Additionally, the results of these simulations showed that MatLab and             

Simulink produce identical results for the same simulations so experiments can be run in either               

program. The creation and analyzing of these simulations explored the solving of differential             

equations using MatLab and Simulink and showed the differences in linear and nonlinear system              

models.  

In the second portion of the lab, the calibration procedure showed that a linear regression               

was the best fit for the transducers used on the slider and pendulum due to the closeness of fit.                   

This portion explored calibration techniques and issues with extrapolating curves beyond           

calibration regions. The comparison of the experimental data to the simulation based on             

calculated constants showed the discrepancies between the calculated values and the values            

required to produce a similar result in the simulation. The viscous damping coefficient was              

calculated to be 0.0968 , but a value of 0.01 was used to produce the similar simulation.   m
Ns      m

Ns         

This indicates an issue in the methods used to calculate this value. It is likely that the coupling of                   

the slider and pendulum cannot exactly be modeled by values calculated through isolating either              

system. The dry friction coefficient was calculated to be 0.0732 and it was not necessary to                

adjust this value to produce the similar simulation. This could indicate the system for calculating               
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this value is very rigorous, however, the value has little effect on the simulation which is more                 

dependent on the motion of the pendulum. Therefore, it is unknown if this value is truly accurate                 

based on the experimental data. Finally, the experimental data disproved the results of step 25 in                

Lab 3 of the lab manual. This was due to the coupling of the pendulum and slider. 

Overall, this lab explored the simulation of a multi-DOF system and how simulink can be               

used in conjunction with MatLab to collect and compare experimental data to simulation data.              

Within the realm of dynamical modelling, this will be invaluable in future experiments.  
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VIII. Appendices  

A. MatLab Code. 
Lab2_Linear.m 

% script for running the linear model and plotting the results 
tspan = [0 10]; % simulation time 
options = odeset('mass',@MMLinear); 
y0 = [-0.1, 0, pi/6, 0]; % initial conditions 
[t,y] = ode45(@FFLinear,tspan,y0,options); % differential equation solver 
 
figure 
subplot(2,2,1); 
plot(t,y(:,1)) 
title('Linear Position','interpreter','latex'); 
xlabel('Time $t$ [s]','interpreter', 'latex'); 
ylabel('Linear Position $x$ [m]','interpreter','latex'); 
 
subplot(2,2,3); 
plot(t,y(:,2)) 
title('Linear Velocity','interpreter','latex'); 
xlabel('Time $t$ [s]','interpreter', 'latex'); 
ylabel('Linear Position $\dot{x}$ [$\frac{m}{s}$]','interpreter','latex'); 
 
subplot(2,2,2); 
plot(t,y(:,3)) 
title('Angular Position','interpreter','latex'); 
xlabel('Time $t$ [s]','interpreter', 'latex'); 
ylabel('Angular Position $\theta$ [rad]','interpreter','latex'); 
 
subplot(2,2,4); 
plot(t,y(:,4)) 
title('Angular Velocity','interpreter','latex'); 
xlabel('Time $t$ [s]','interpreter', 'latex'); 
ylabel('Angular velocity $\dot{\theta}$ [$\frac{rad}{s}$]','interpreter','latex'); 
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FFLinear.m 
function yp=FFLinear(t,y) 
    % forcing function for the linear system 
    m1 = 0.78; 
    k = 294; 
    c = 0.05; 
    L = 1; 
    g = 9.81; 
  
    yp=zeros(4,1); 
  
    yp(1)=y(2); 
    yp(2)= -2*k*y(1); 
    yp(3)=y(4); 
    yp(4)=-c*y(4) - m1*g*L*y(3); 
end 
 
 

MMLinear.m 
function n = MMLinear(t,y) 
    % mass matrix function for the linear system 
    m1 = 0.78; 
    m2 = 1.15; 
    L = .23; 
    Ic = 0.0014; 
 
    n = [   1   0           0   0       ;... 
            0   m1 + m2     0   m1*L    ;... 
            0   0           1   0       ;... 
            0   m1*L    0   Ic + m1*L^2]; 
end 
 

Lab2_NonLinear.m 
% script for running the nonlinear model and plotting the results 
tspan = [0 10]; % experimental runtime 
options = odeset('mass',@MMNonLinear); 
y0 = [-0.1, 0, pi/6, 0]; % initial conditions 
[t,y] = ode45(@FFNonLinear,tspan,y0,options); % differential equation solver 
 
figure 
plot(t, y(:,1)); 
 
subplot(2,2,1); 
plot(t,y(:,1)) 
title('Linear Position','interpreter','latex'); 
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xlabel('Time $t$ [s]','interpreter', 'latex'); 
ylabel('Linear Position $x$ [m]','interpreter','latex'); 
 
subplot(2,2,3); 
plot(t,y(:,2)) 
title('Linear Velocity','interpreter','latex'); 
xlabel('Time $t$ [s]','interpreter', 'latex'); 
ylabel('Linear Position $\dot{x}$ [$\frac{m}{s}$]','interpreter','latex'); 
 
subplot(2,2,2); 
plot(t,y(:,3)) 
title('Angular Position','interpreter','latex'); 
xlabel('Time $t$ [s]','interpreter', 'latex'); 
ylabel('Angular Position $\theta$ [rad]','interpreter','latex'); 
 
subplot(2,2,4); 
plot(t,y(:,4)) 
title('Angular Velocity','interpreter','latex'); 
xlabel('Time $t$ [s]','interpreter', 'latex'); 
ylabel('Angular velocity $\dot{\theta}$ [$\frac{rad}{s}$]','interpreter','latex'); 
 

FFNonLinear.m 
function yp=FFNonLinear(t,y) 
    % forcing function for the nonlinear system 
    m1 = 0.78; 
    m2 = 1.15; 
    k = 294; 
    c = 0.05; 
    L = 0.23; 
    g = 9.81; 
    Mo = -c*y(4); 
    mu = 0.03; 
  
    yp=zeros(4,1); 
  
    yp(1)=  y(2); 
    yp(2)=  -m1*L*(mu*cos(y(3))-sin(y(3)))*y(4)^2 - mu*(m1+m2)*g-2*k*y(1); 
    yp(3)=  y(4); 
    yp(4)=  Mo - m1*g*L*sin(y(3)); 
  
end 
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MMNonLinear.m 
function n = MMNonLinear(t,y) 
    % mass matrix for the nonlinear system 
    m1 = 0.78; 
    m2 = 1.15; 
    L = .23; 
    Ic = 0.0014; 
    mu = 0.03;  
  
    n = [   1   0               0   0                               ;... 
            0   m1 + m2         0   m1*L*(cos(y(3)) + mu*sin(y(3))) ;... 
            0   0               1   0                               ;... 
            0   m1*L*cos(y(3))  0   Ic + m1*L^2                     ]; 
  
end 
 

B. Simulink Code. 
Lab2_LinearSim.slx 

 
Figure 11. Simulink linear simulation subsystem view 

 
Figure 12. Pendulum subsystem 
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Figure 13. Slider subsystem 
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Lab2_NonLinearSim.slx 

 
Figure 14. Nonlinear Simulink simulation 
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C. Raw Data. 
Table 1. Selected raw data from multi-DOF experiment 
Time [s] Slider Potentiometer Voltage [V] 
0 2.249863 
0.001 2.244942 
0.002 2.249863 
0.003 2.249863 
0.004 2.249863 
0.005 2.249863 
0.006 2.249863 
0.007 2.249863 
0.008 2.249863 
0.009 2.249863 
0.01 2.249863 
0.011 2.244942 
0.012 2.249863 
0.013 2.249863 
0.014 2.249863 
0.015 2.249863 
0.016 2.249863 
0.017 2.249863 
0.018 2.249863 
0.019 2.244942 
 

 


