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Dynamic Model 
 
Three sets of origins and axes were established relating to the PIGA. The first frame,               

, is located at the center of mass of the disk with the x​0 axis always orthogonal to the, , }{x0 y0 z0                    
face of the disk and the y​0​z​0 plane is coplanar with the yoke. The next frame, , was                x , , }{ 1 y1 z1   
located in the center of the yoke bearing with the y​1 axis parallel to the motor axis and the z​1 axis                     
along the yoke axis of rotation. A set reference axes were located in the center of mass of the                   
disk when . This frame is denoted as . The rotation of the yoke and pendulum  θ = 0       , , }{x2 y2 z2         
about the motor was denoted as positive ϕ in the counterclockwise direction when viewed from               
the top. The rotation of the pendulum was denoted as positive from horizontal as shown in           θ      
Figure 1​. 

 

 
Figure 1.​ Axis and State Variables of PIGA 

 
To begin calculations relations between the axes, variables for inertia terms, and            

rotational velocity terms were created about the principle axes. Using the rotating frame formula,              
the displacement vector of the center of mass from the reference point and the rotation about the                 
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motor axis were used to determine the velocity vector of the center of mass. This process was                 
repeated to find the acceleration vector with respect to the reference frame. 

 
The angular momentum was calculated by multiplying the inertia matrix and the angular             

velocity vector with respect to the frame. By using this angular momentum vector      , , }{x0 y0 z0         
with the rotating frame formula, the change in angular momentum can be equated to the net                
torque on the system. 
 

This torque was equated to the sum of the moments from reaction forces, while the               
reaction forces were found from force balancing and the acceleration vector. Using these six              
equations, two equations of motion can be written. These equations were inputted in a MATLAB               
script to solve within the ​ode15s() function. All of the previously mentioned calculations can be               
found in ​Appendix A​. 

 
The motor dynamics were calculated by adding armature current as a state variable in the               

ODE function. The state equation for current included the the electrical dynamics of the motor.               
The rotational moment of inertia ​J was also added into the angular momentum matrix and the                
equations of motion were solved again including this value.  

 
When observing the derived differential equations of motions for the system dynamics, it             

was deemed too complicated to linearize the system. Thus, the equations of motion were left in                
state - space form. 
 
Torque Control 
 

The open-loop simulation, based off of the given system parameters shown in ​Figure 2              
below, demonstrates the expected behavior of the PIGA with an instantaneous change in frame              
acceleration of ±1 m/s​2​. represents the rotation of the pendulum and represents the rotation    θ        Φ    
of the motor. Under uniform acceleration, the pendulum gyrates as expected. In this case, the               
angle of the pendulum arm reaches steady state at around -27.5° and the angle of the motor     θ              Φ  
continues to increase indefinitely at a constant rate. This continuous increase of caused by            Φ    
precession in the system and is observable by the constant angular velocity of even after has             Φ    θ  
stabilized a constant value. This is the result of the constant angular velocity of the disk at 12000                  
rpm.  
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Figure 2.​ Open Loop Simulation of EoM 

 
In order to control the open-loop simulation to meet the desired design specifications of              

-3°< <3°, no steady state error and a small settling time, the following negative feedbackθ               
controller gains were implemented shown below as ​Table 1​. 
 

Table 1.​ Torque PD Controller Gains 

Controller  Gain 

P ( )θ  70 

D ( )θ  1.2 

P ( )Φ  0 

D ( )Φ  1 

 
The proportional controller gain is needed within the system as the angle of the pendulum               

arm is roughly proportional to the angular acceleration of the motor when implemented as θ               
shown in ​Figure 3​. Thus, a large proportional gain reduces the steady state error due to a step                  
acceleration input. However, using just a P controller is relatively unstable and causes             
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high-frequency oscillations. To correct for these oscillations, a derivative gain was added,            
making the controller a PD feedback controller. This derivative gain reduces overshoot and             
affects the settling time. While the PD torque-controller with the found gains satisfies the              
maximum error requirement with a 20 m/s step input, there is still a steady-state error as shown                 
in ​Figure 3a​. To correct this, an integral gain would be required. The integral controller is                
unnecessary for the step response and motor dynamics of the system but is vital when modeling                
tracking ascent profile of the Saturn V rocket. 

 
Figure 3a.​ 20 m/s Step Responses with Torque Controller  
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Figure 3b.​ 20 m/s Step Responses with Torque Controller Derivative 

 
Motor Dynamics 
 

In the previous simulations, torque was the input of the system. By observing the output               
of the torque controller controller with respect to the equations of motions and the step input, it                 
was possible to find the maximum torque and rotational velocity requirements for the motor.              
These equations can be seen in the appendix. From these simulations, it was determined the               
motor for this system should be able to at least provide a torque of 0.029 Nm and voltage of                   
0.887 V.  
 

From the listed motors, the DP20-10 brush motor from ElectroCraft can be implemented             
to meet the desired output response of the PIGA controller as it can reach a peak torque of                  
0.3742 Nm and the required 30.44 rpm. This is far greater than the necessary torque for the                 
system at varying speeds, and therefore gives the system a factor of safety for the motor’s                
abilities. With this in mind, no gear ratios are needed to increase or decrease the rotation between                 
the motor and the pendulum. If a lower torque value is needed, the voltage can be controlled to                  
match the desired torque. A detailed graph demonstrating the torque response of the motor is               
shown below as ​Figure 4​.  
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Figure 4.​ DP20-10 Speed Torque Curve 

 
The DP20-10 has the characteristics listed in ​Table 2​. These characteristics were            

accounted for when augmenting the state-space model to include the motor dynamics. Motor             
inertia and motor inductance were taken into account with calculations found in the appendixes. 

 
Table 2. ​DP20-10 Characteristics 

Motor Characteristic Symbol Value 

Moment of Inertia of the Rotor J 1.20*10​-5 ​kg.m​2 

Motor Viscous Friction 
Constant  

b 0 N.m.s 

Electromotive Force Constant k​b 0.035 V/rad/sec 

Motor Torque Constant k​t 0.03531 N.m/Amp 

Electric Resistance R 0.70 Ω  

Electric Inductance L 0.00110 H 
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Figure 5a.​ Step Response with Motor Controller and Motor Dynamics 

 
Figure 5b.​ Step Response with Motor Controller and Motor Dynamics Derivative 
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Figure 5c.​ Step Response with Motor Controller and Motor Dynamics Voltage and Torque 

 
With the augmented state-space model, it was possible to implement a simulation of the              

voltage-control system and tune the gains in order to meet the set requirements. Despite the need                
to tune the gains, using the same controller gains as before still satisfies the problem               
specifications as shown in ​Figure 5​. Therefore, the gains used in ​Table 1 satisfy the problem                
specifications when used in a closed loop voltage control system.  
 
Validity and Limitations 
 

The simulations verify that the implemented controller is capable of meeting the problem             
specifications. The angle of the pendulum arm does not exceed 3° in either rotational direction               
(maximum of -2.5°), and the settling time is practical. While there is a slight steady state error                 
with respect to the horizontal, it is within the bounds of 3°. The motor control inputs do not                  
exceed the manufacturer limitations as only a rotation of 30 RPM is needed to control this                
system whereas the motor limitations can reach values greater than 2000 RPM. It should be               
noted that even though the motor can reach speeds far greater than 30 RPM, it should not be                  
done in excess due to the fact that it will obstruct the effectiveness of the PIGA. The motor                  
should only be done to mitigate the effects of precession to remain within 3° of the horizontal.                 
Gear ratios are not necessary for speed or torque purposes so a 1:1 ratio should be used.  

 

8 



The only significant improvement that can be noted about the controller is the settling              
time. While a settling time of 4 seconds is not inoperable, the controller would be improved by                 
decreasing this value. This can be done by altering the derivative gain of the controller but would                 
alter the steady state error and angle response of the pendulum armature angle. Additionally, the               
implementation of a I gain can be used to remove steady state error, as was done in the following                   
section. 
 
Bonus 
 

When modeling the ascent profile of the Saturn V rocket with the prior feedback              
controller (PD controller), the simulation did not meet the specification of no steady-state error.              
To counteract this, a PID controller was used instead of a PD controller with gains shown in                 
Table 3​: 
 

Table 3. ​PID Controller of Saturn V Rocket Ascent 

Controller  Gain 

P ( )θ  70 

I ( )θ  150 

D ( )θ  1.2 

P ( )Φ  0 

D ( )Φ  1 

 
Figure 6 shows the simulated response of the Saturn V in its ascent with the PID                

controller on the PIGA. The figure demonstrates the response of and , and , and the          θd
dt  Φd

dt  θ  Φ    
motor torque and voltage of the PIGA on the Saturn V in its ascent. With the PID controller, it                   
was possible to meet the no steady-state error requirement while also keeping the pendulum              
angle error low (maximum of 2.5°).  
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Figure 6a. ​Ascent Profile of Saturn V Torque and Voltage

 
Figure 6b. ​Ascent Profile of Saturn V Torque and Voltage Derivative 
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Figure 6c. ​Ascent Profile of Saturn V Torque and Voltage 
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Appendices 
Appendix A: Derivation Steps 
 
Unit Vectors: 

 

 
Acceleration Vector: 
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Time Derivative of Angular Velocity: 

 

 

 

 
Force and Moment Balance: 

 

13 



 
Equations of Motion: 
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Motor Dynamics: 
 

 

 
 

 
Appendix B: Simulation Code 

Main.m 

y0 = zeros(6,1); 

tspan = [0 5]; 

[t,y] = ode15s(@odefun_PIGA,tspan,y0); 

Output Variables 

Kt  = 0.03531;                          ​% [ N m / A] 

V = zeros(size(y,1),1); 

T = zeros(size(y,1),1); 

for​ i = 1:size(y,1) 

    V(i) = controller_PIGA(y(i,:)');    ​% [ V ] 

    T(i) = y(i,5) * Kt;                 ​% [ A ] * [ N m / A ] 

end 

[maxV,idV] = max(abs(V)); 

[maxT,idT] = max(abs(T)); 

[maxTheta,idTheta] = max(abs(y(:,1)*180/pi)); 

Plotting 
Plots the results of the ODE solver 

figure(1) 

yyaxis ​left 

hold ​on 

plot(t,y(:,1)*180/pi); 

scatter(t(idTheta),y(idTheta,1)*180/pi) 
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hold ​off 

MTheta = sprintf(​'Max $\\theta$ = %0.3f [deg]'​,maxTheta); 

title(​'Theta and Phi vs. time'​) 

xlabel(​'Time [s]'​) 

ylabel(​'$Angular\ Position\ [deg]$'​,​'Interpreter'​,​'latex'​,​'FontSize'​,12) 

 

yyaxis ​right 

plot(t,y(:,3)*180/pi); 

ylabel(​'$Angular\ Position\ [deg]$'​,​'Interpreter'​,​'latex'​,​'FontSize'​,12) 

legend({​'$\theta$'​,MTheta,​'$\phi$'​},​'Interpreter'​,​'latex'​,​'FontSize'​,12) 

 

figure(2) 

yyaxis ​left 

plot(t,y(:,2)*180/pi); 

title(​'First Derivatives of Theta and Phi vs. Time'​) 

xlabel(​'Time [s]'​) 

ylabel(​'$Angular\ Velocity\ [\frac{deg}{s}]$'​,​'Interpreter'​,​'latex'​,​'FontSize'​,12) 

 

yyaxis ​right 

plot(t,y(:,4)*180/pi); 

ylabel(​'$Angular\ Velocity\ [\frac{deg}{s}]$'​,​'Interpreter'​,​'latex'​,​'FontSize'​,12) 

legend({​'$\frac{d}{dt}\theta$'​,​'$\frac{d}{dt}\phi$'​},​'Interpreter'​,​'latex'​,​'FontSize'​,12) 

 

figure(3) 

yyaxis ​left 

hold ​on 

plot(t,V); 

scatter(t(idV),V(idV)); 

hold ​off 

title(​'Motor Torque and Voltage'​) 

xlabel(​'Time [s]'​) 

ylabel(​'$Voltage\ [V]$'​,​'Interpreter'​,​'latex'​,​'FontSize'​,12) 

 

yyaxis ​right 

hold ​on 

plot(t,T); 

scatter(t(idT),T(idT)); 

hold ​off 

MV = sprintf(​'Max V = %0.3f [V]'​,maxV); 

MT = sprintf(​'Max T = %0.3f [Nm]'​,maxT); 

ylabel(​'$Torque\ [N \cdot m]$'​,​'Interpreter'​,​'latex'​,​'FontSize'​,12) 

legend({​'$Voltage$'​,MV,​'$Torque$'​,MT},​'Interpreter'​,​'latex'​,​'FontSize'​,12) 
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controller_PIGA.m 

function​ [ V ] = controller_PIGA( y ) 

    ​% odefun_PIGA: Controller function for input voltage 

    ​% INPUTS: 

    ​%       y(1)        = theta             [ rad ] 

    ​%       y(2)        = d_theta/dt        [ rad / s ] 

    ​%       y(3)        = phi               [ rad ] 

    ​%       y(4)        = d_phi/dt          [ rad / s ] 

    ​%       y(5)        = i                 [ amps ] 

    ​%       y(6)        = theta_int         [ rad * s ] 

    ​% 

    ​% OUTPUTS: 

    ​%       V           = motor voltage     [ V ] 

 

    K = zeros(6,1); 

 

    K(1)    =   -70; 

    K(2)    =  -1.2; 

    K(3)    =     0; 

    K(4)    =    -1; 

    K(5)    =     0; 

    K(6)    =  -150; 

 

    V = sum(y.*K); 

end 

 
 

odefun_PIGA.m 

function​ dydt = odefun_PIGA(t,y) 

    ​% odefun_PIGA: Solves the ODE functions of the PIGA system 

    ​% INPUTS: 

    ​%       y(1)        = theta             [ rad ] 

    ​%       y(2)        = d_theta/dt        [ rad / s ] 

    ​%       y(3)        = phi               [ rad ] 

    ​%       y(4)        = d_phi/dt          [ rad / s ] 

    ​%       y(5)        = i                 [ amps ] 

    ​%       y(6)        = theta_int         [ rad * s ] 

    ​% 

    ​% OUTPUTS: 

    ​%       dydt(1)     = d_theta/dt        [ rad / s ] 

    ​%       dydt(2)     = d^2 theta /dt^2   [ rad / s^2 ] 
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    ​%       dydt(3)     = d_phi/dt          [ rad / s ] 

    ​%       dydt(4)     = d^2 phi /dt^2     [ amps ] 

    ​%       dydt(5)     = d_i/dt            [ A / s ] 

    ​%       dydt(6)     = theta             [ rad ] 

Ascent Profiles 

    a   = 20;                       ​% [m/s] 

%     a   = SV_Ascent(t);             % [m/s] 

Pendulum Constants 

    m   = 50./1000;                 ​% [kg] 

    b   = 3.5./100;                 ​% [m] 

    p   = 12000.*2.*pi./60;         ​% [rad/s] 

    d   = 3./100;                   ​% [m] 

Motor Constants 

    Ke  = 0.035;                    ​% [ VDC / RPM] 

    Kt  = 0.03531;                  ​% [ N m / A] 

    R   = 0.70;                     ​% [ Ohms ] 

    L   = 0.00110;                  ​% [ H ] 

Derived Values 

    Io  = 1/16*m*b^2;               ​% [kg m^2] 

    I   = 1/8*m*b^2;                ​% [kg m^2] 

    J   = 1.201e-05;                ​% [kg m^2] 

Controller 

    V  = controller_PIGA( y );      ​% [N*m] 

State-Space Equations 

    dydt = zeros(size(y,1),size(y,2)); 

 

    dydt(1) = y(2); 

    dydt(2) =  (y(4).^2.*(m.*d.^2.*sin(y(1)).*(cos(y(1))-1)-sin(y(1)).*cos(y(1)).*(Io-I))+​... 

                y(4).*(I.*p.*cos(y(1)))-​... 

                a.*(m.*d.*cos(y(1))))./​... 

                (Io+m.*d.^2); 
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    dydt(3) = y(4); 

    dydt(4) =  (y(5)*Kt*(cos(y(1))+sin(y(1))*tan(y(1)))+​... 

                y(2)*y(4)*2*(m*d^2*sin(y(1))-sin(y(1))*(I-Io))+​... 

                y(2)*(I*p))/​... 

                ((I+J)*sin(y(1))*tan(y(1))+(Io+J)*cos(y(1))+m*d^2*(cos(y(1))-1)); 

 

    dydt(5) = -Ke/L*y(4) - R/L*y(5) + V/L; 

Added Integral Control 

    dydt(6) = y(1); 

end 

SV_Ascent.m 

function​ g=SV_Ascent(t) 

  ​if​ t<0 

    g=0; 

  ​elseif​ t<145 

    g=(797E-6).*t.^2+(0.05).*t+12; 

  ​elseif​ t<160 

    g=(0.667).*(t-145)+28; 

  ​elseif​ t<165 

    g=(1.5).*(t-160); 

  ​elseif​ t<460 

    g=(32.9E-6).*(t-165).^2+(25.9E-3).*(t-165)+7.5; 

  ​elseif​ t<500 

    g=(0.05).*(t-460)+14; 

  ​elseif​ t<550 

    g=(0.03).*(t-500)+12.5; 

  ​elseif​ t<560 

    g=(0.5).*(t-550); 

  ​elseif​ t<700 

    g=(14.3E-3).*(t-560)+5; 

  ​else 

    g=0; 

  ​end 

end 
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