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1. INTRODUCTION 

A triathlon is one of the few sports that depends on the            
quality and performance of a device to achieve optimal         
performance in a competition. The USA Triathlon Association        
(USAT) has registered more than 200,000 athletes with an         
annual membership (USAT, 2015), which represents around       
35% of the total athletes present in the USAT events each year,            
this number keeps growing due to this sport is also taken as a             
personal challenge not just as a lifestyle. 

The number of athletes for one-day registration for        
competition in the USAT goes from 299,030 (USAT, 2015)         
until 371,988 (USAT, 2011), from 2010 through 2015        
demographic registration. The cost for a triathlon bicycle could       
be from 2000 USD until 15000 USD, where the main          
differences are weight, frame shape, material, and aerodynamic        
properties that also have to be within the USAT rules.  

The triathlon bicycles that are currently in the market have          
an average weight of 8 kg (17.5 kg), where the frame represents            
an average of 1.36 kg (3 lb.) and the primary materials used for             
bicycle frames are AISI 1060 High Carbon Steel, ASTM A182          
Chromoly Steel, Aluminum 6061-T4, Titanium, and Carbon       
Fiber. 

This article analyses the stresses, moments and torques        
present in an over-constrained frame system and optimizes the         
design of a customized bicycle frame for triathlon competition         
using Matlab optimization toolbox to obtain the optimal        
geometry configuration and material selection and Solidworks       
to analyze the integrity of the frame based on the Matlab           
results. 
 
2. PROBLEM FORMULATION 

Bicycle frames used in USA triathlons are instrumental to         
the success of athletes. Weight reductions of the frame would          
increase the competitiveness of an individual athlete. 

 
2.1 Objective 

To create a bicycle frame that is capable of supporting the           
stresses of a rider seen in competition, conform to the rules of            
USA Triathlons, all while minimizing the material weight of         
the frame. To achieve this objective, the geometry and material          
of the frame will be adjusted, as well as the width, thickness,            
and aspect ratio of each tube. To simplify the problem, the           
model was broken up into 5 modules. These were: Geometry,          
Section Modulus, Stress, Rules, and Cost/Mass. 

The objectives can be defined as follows: 
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The objective functions can be defined as: 
 

(2) 

  (3) 
 

 where:   
 

2.1 N2 Diagram 
In order to organize the problem an N2 diagram was          

created as shown in Figure 1. This diagram shows there is no            
coupling between any of the modules and the system is entirely           
feedforward, which aids computation time.  
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Figure 1. N2 Diagram 
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3. GEOMETRY MODEL 
 
3.1 Method 

In order to reduce the number of design variables without          
reducing the degrees of freedom of the algorithm, the         
geometrical design variables were defined as the intersection        
points of the tubes, rather than the lengths and positions of all            
tubes. This reduced the number of constraint equations, but also          
required a module for determining the geometry of the bicycle          
given the input vector.  

 

 
Figure 2. Input Variable Geometric Interpretation 

 
The geometric module takes in the design vector in the          

form of node positions and lengths d and p, and outputs the            
lengths of each tube as well as the starting and ending position            
of each tube. This is done using by assuming the position of the             
front wheel and linearly extrapolating tube positions. While        
technically this information over defines the system, it proves         
useful in later calculations.  

 
3.2 Constraints and Bounds 

The geometrical model is constrained by the locations of         
tube 2 and tube 6 because these tubes cannot intersect with the            
wheels. As such, the following circle-line intersection equations        
are defined where it is assumed the circle lies at the origin and r              
is the wheel diameter plus the width of the tube times its aspect             
ratio.  

 

  (4) 

  (5) 
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The bounds were set as: 
 

  (9) 

  (10) 

  (11) 

  (12) 

  (13) 

  (14) 

  (15) 

  (16) 
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4. SECTION MODULUS MODEL 
 
4.1 Method 

In order to simplify the solving of the stress model, the           
section modulus is found for each tube. The modulus relates the           
applied moment to the maximum stress of tubes of a particular           
shape. Because the model assumes the tubes to have a hollow           
oval shape, as shown in Figure 3, knowing the section modulus           
simplifies the internal stress calculation in the following        
module. In the following diagram, b is the tube width. 

 

 
Figure 3. Tubular Cross-Sectional Shape 

 

  (18) 

 (19) 
 
4.2 Constraints and Bounds 

The section modulus module is constrained in that the         
thickness of the tube cannot be greater than half the width of            
the tube width. Additionally, because the tube 7 is to fit within            
tube 6, the outer perimeter of tube 7 cannot intersect the inner            
perimeter of tube 6.  

 (20) 

  (21) 
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The bounds were set as: 
 

  (22) 

  (23) 

  (24) 
 
5. STRESS MODEL 
 
5.1 Method 

The stress model makes use of the previous two modules to           
determine the internal moments and reaction forces experienced        
by the tubes. In order to determine these forces and moments,           
the frame problem was converted to seven beam problems, with          
the nodes and forces defined in Figure 4. 
 

 
Figure 4. Frame Loadings and Node Numbers 

 
With the loadings defined and reaction forces and moments         

placed at each node, force and moment balance equations were          
written for each beam and node. This provided 24 force or           
moment balance equations for a total of 26 unknown variables.          
The extra two variables are due to the overconstrained nature of           
the bicycle frame, whereby two of the interior members (for          
example tube 2 and 6) could be removed to become a statically            
determinate problem. In order to overcome the missing two         
equations, the direct displacement method was applied. In this         
method, a rotational displacement was applied to the pedal         
sprocket in order to determine the reactionary moments        
experienced by the tubes. This displacement is exemplified in         
Figure 5. 

 

 
Figure 5. Direct Displacement Applied Rotation 

 

From this displacement, the following relationship could 
be found between the properties of the tube and the internal 
moment: 

  (25)  
 
This equation can be used to supplant one of the missing           
equations. Applying this method to the top tube intersection         
supplies the second missing equation. 

With these additional equations, the system can be solved         
as a 26x26 matrix with the applied forces as a solution vector.            
Solving the matrix equation provides the internal moments and         
reactionary forces experienced by the tubes.  

 
5.2 Constraints and Bounds 

The constraints formed from the internal stresses arise        
from the material limits of the tubes. The internal stress can be            
calculated as a combination of the axial and bending stresses          
experienced by the tubes. This stress must therefore be kept          
below the failure stress of the selected material.  

 

  (26)
 

  (27) 
 
5.3 Validation 

The stress model was validated using a Solidworks model.         
After running a simple optimization script, the resultant        
geometries were used to create the solid model shown in Figure           
6. Using identical loadings and material properties, the        
solidworks model showed the same margin of safety that the          
stress module predicted. As such, there is high confidence in          
the accuracy of the stress model.  

 

 
Figure 6. SolidWorks Simulation 
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6. USA TRIATHLON RULES 
Because of the nature of this problem, there are also          

constraints that arise not from physical limits, but the rules set           
forth by the governing body of USA Triathlons.  

 
6.1 Constraints and Bounds 

The USA Triathlon rules mainly pertain to the allowable         
geometries of the bicycle. The relevant geometrical constraints        
are shown in the following equations. 

 

  (28)  

  (29) 
  (30) 

  (31) 
 

 
7. OBJECTIVE FUNCTION CALCULATION 

The overall mass of the frame is one of the objection           
functions. In order to calculate the mass, the lengths as          
calculated by the geometrical module is multiplied times the         
material density and calculated cross-sectional areas. Moreover,       
the cost of the material, if desired, can be calculated by           
multiplying the mass times the cost density of the material.          
These equations are shown below.  

 

  (32) 

  (33) 
 
Additionally, the seat height can be calculated by summing the          
lengths of tubes 6 and 7.  
 

 (34) 
 
8. DESIGN SPACE EXPLORATION 

In order to explore the design space, an initial design          
vector was defined by using an existing design of a          
commuter-style bicycle. This design was checked and shown to         
be feasible within the model. With this design as the base case,            
a OVAT experiment was designed with 40 levels for each of           
the 30 continuous design variables and 5 levels for the integer           
material variable. This process resulted in 1175 experiments,        
with 664 being feasible and the current minimal weight being          
4.0581 kg. The largest effects were seen from changing the          
wheelbase and thickness and aspect ratio of the longest tube          
(2). Generally, reducing the width, aspect ratio, and thickness         
result in lighter frames, but that have higher internal stresses.          
This is the main crux of the problem, and the justification for            
optimization.  
 

9. ALGORITHM SELECTION 
 
9.1 Gradient Method 

This problem as defined has a large number of nonlinear          
constraints. Additionally, the design space seems very complex.        
As such, SQP seems like a great option for handling these           
nonlinearities while still being able to traverse the design space.  

For the sake of single objective optimization of this         
system, frame weight was chosen. This is because the weight of           
the frame is generally seen as correlated with speed of triathlon           
bikes and lighter frames require less power during hill climbs.          
The seat height objective will be ignored for now.  

Implementation of SQP from the feasible solutions of the         
DOE resulted in convergence in every case and satisfaction of          
constraints within 1e-8. Thirty seven of the solutions, including         
the best solution found resulted in true satisfaction of         
constraints. From the ten solutions checked, the active        
constraint was always from the internal stress of the tubes. In           
every case an improvement of 50% or more was seen. 

From this work, the optimal solution was found at a weight           
of 0.414 kg. An generated image of the frame can be seen in             
Figure 7.  

 

 
Figure 7. SQP Optimal Solution 

 
9.1 Heuristic Method 

A genetic algorithm was chosen because of the integer         
variables for the tube material. A GA would very naturally be           
able to handle this, and therefore it seemed like the best choice            
for a Heuristic algorithm implementation. 

Initially trying to solve the problem with a GA was not met 
with much success. It took a large number of generations before 
the solutions approached a reasonable value. 
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Figure 8. Original GA convergence 
 

Attempting to tune the parameters led to slight        
improvements in speed and convergence, but not to the point          
that was seen from a gradient method. The found parameters          
that worked best were Pop = 50, MaxGen = 500, Elites = 1,             
Crossover Fraction = 0.5, Constraint Tol = 1e-8, Max Stall Gen           
= 100. 

 

 
Figure 9. Tuned GA convergence 

 
Despite the tuning efforts, the genetic algorithm was never         

able to reach values as low as those seen by the gradient            
method. Therefore, despite being able to give good results, SQP          
with multistart is deemed most appropriate for solving this         
problem.  
 
10. SENSITIVITY ANALYSIS 

The sensitivity analysis has been performed at the optimal         
point found by the multistart SQP algorithm previously        
discussed. The sensitivity of the weight of the frame is shown           
through the computation of the gradient for the entire design          
vector. Additionally, the normalized gradient is shown. What        
can been determined from the normalized gradient is changing         
the wheelbase has the largest relative impact on the weight of           
the frame. Additionally, the widths and thicknesses of the tubes          
have medium-order effects.  

Moreover, sensitivity about certain parameters was also       
performed. Shown are the sensitivities the design variables        
have to the stress limit and applied force parameters. What can           
be gathered here is that deviations in the maximum stress limit           
have very large impacts on the design variables, especially         
when compared to deviations in the applied force (rider         
weight). The variables most affected by the material properties         
were the tube thicknesses and widths, whereas the handlebar         
location was most affected by the change in the applied force. 

 

                 (35) 

        (36) 
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11. SCALING 
The diagonal elements of the Hessian with the associated         

scalings are shown below in Equation 37: 
After application of scaling, the solutions converged on        

much lower frame weights at a much more consistent rate with           
23 of the runs getting within 0.01 kg of the minimal value. This             
minimal value was 0.2039 kg.  

 

                    (37) 
 
12. FINAL DESIGN 

The chosen final solution is shown in Figure 10 and          
Equation 38 lists the selected variables.  

 

 
Figure 10. Final Frame Design 

 

  (38)  
The final mass of this design is 0.4013 kg. 
 
 
13. POST OPTIMALITY ANALYSIS 

In addition to the sensitivity analysis performed, a pareto         
front was found around the selected design vector. Shown in          
Figure 11, the pareto front shows the negative of seat height           
with respect to frame weight. The estimated pareto front has a           
natural corner that also falls well within the required inseam          
range of most athletes while also maintaining an extremely low          
frame weight. Therefore, the point shown in red was the          
selected final solution. 
 

 
Figure 11. Estimate of Pareto Front 
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14. CONCLUSIONS 
Using a tuned GA was inconsistent in finding a solution to           

the problem. However, using a well scaled problem definition         
and thorough multi-start testing, we are quite confident in the          
global optimality of the solution found through SQP. This         
solution serves as an excellent balance between weight and seat          
height, and the results of this analysis will give riders the           
information needed to select the best frame for themselves. 
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